

Getting Started with CANLight
Written by seth@mindsensors.com

Document version: 1.3 (1/5/17)

mailto:seth@mindsensors.com

Overview

● Hardware and connections
● What is CAN?
● Setting up software
● Many example projects
● Guide to all features
● Eclipse shortcuts and useful tools
● Documentation, more resources, and getting help

Hardware Components

● roboRIO – the robot controller
● PDP – Power Distribution Panel

– battery

● CANLight

Power Distribution Panel (PDP)

● Power comes from the battery
to the Power Distribution Panel

● The PDP connects power to
everything else on the robot

● Two of the items it will power
are the roboRIO and the
CANLight.

RoboRIO

● The roboRIO is your robot controller
● This is where your robot program is stored and

what does all the processing
● The driver station will

connect to this either
through a Ethernet cable
or over a wireless bridge.

CANLight

● The CANLight is a CAN-based smart controller
for RGB LED strips

● It accepts power from the
PDP via an XT60
connection

● It interfaces with the
roboRIO over the CAN protocol

● The terminal block has four ports to connect the
red, green, blue and ground wires from your
RGB LED strip

– red green blue, light-emitting diode

Connections

● Connect power from the PDP to the roboRIO
and CANLight

● Connect the CANLight to the roboRIO with a
CAN wire for communication

● Connect a battery to the PDP

RGB LED Strip Connection

● Of course you probably want to connect your RGB
LED strip to the CANLight. Loosen the screws on the
blue terminal, insert each wire, and tighten them.

● Make sure the CANLight is receiving enough
amperage for the length of RGB LED strip you are
using. A short strip will have no problems, with a very
long one you may want to check it has enough power.

– If the CANLight turns off when trying to set
secondary colors or white, the strip is probably too
long for the amount of power the CANLight is
receiving.

What is CAN?

● CAN (Controller Area Network) is a
communications protocol not unlike I2C or SPI
you may have used in the past

● It is commonly found in vehicles
● Communication is performed over only two

wires

CAN Wire

● A twisted pair of wires
● Red and black, or yellow and green

– Red/Yellow: high

– Black/Green: low

● Make sure polarity matches!

CAN Networks

● You can daisy-chain CAN devices

● The roboRIO has one CAN port. You can connect it to an
SD540C motor controller, and connect that to a CANLight.

● However, this has negative implications for reliability. If the wire
between the roboRIO and SD540C are severed (in this
scenario) communication between the roboRIO and CANLight
will also be terminated.

● While that might not be a huge issue in this case (if the lights go
off the robot can still run), if multiple SD540C motor controllers
are attached this problem may be more significant.

Solution to the Reliability Problem

● There are other network typologies
● An appealing option is to use a CAN splitter
● With this you connect the roboRIO and all CAN

devices to the splitter

● Product name: CANSplitter
– http://www.mindsensors.com/frc/184-splitter-for-can-network

http://www.mindsensors.com/frc/184-splitter-for-can-network

The 120Ω Resistor

● The CAN protocol requires a 120 ohm resistor
on either end of the network in a chain. The
roboRIO has one built in, so if you are daisy-
chaining devices then you should end the chain
with a second 120 ohm resistor.

● If you are using mindsensors.com's CAN
Splitter, it already has a resistor built in (like the
roboRIO)
– You can activate or bypass it with a jumper.

Even Mode Information on CAN

● http://www.mindsensors.com/content/86-can-and-its-topology

http://www.mindsensors.com/content/86-can-and-its-topology

Finishing Connections

● With those few connections complete you
should be able to move on to programming!

● The last physical connection is connecting the
roboRIO to your programming computer

● The roboRIO has both a USB and an Ethernet
port for networking

Wireless

● Wireless bridge
– the roboRIO connects to a small router on the robot

– another router connects to the driver station
computer

– the routers are configured to act as a direct
connection

● You may consider using a hard-wired
connection for reliability when programming

RoboRIO Routing

● You will need a host name to connect to your
roboRIO

● Host names (replace #### with your team number)

– roboRIO-####-FRC.local
– 10.##.##.20...
– USB: 172.22.11.2

● More information
http://wpilib.screenstepslive.com/s/4485/m/13503/l/242608-roborio-networking

http://wpilib.screenstepslive.com/s/4485/m/13503/l/242608-roborio-networking

Programming

● Let's start programming! Here's an outline of
the first-time setup steps
– Install the FRC 2017 Update Suite

– Image your roboRIO

– Download and install Eclipse Mars (4.5)

– Add WPILib Robot Development plugins to Eclipse

– Add the mindsensors.com FRC Library

– Create your first project

● WPI provides detailed tutorials on all of this
http://wpilib.screenstepslive.com/s/4485/m/13503

http://wpilib.screenstepslive.com/s/4485/m/13503

FRC 2017 Update Suite

● This contains a lot of useful (and required)
software this includes
– LabVIEW and FRC Robot Simulator

– FRC Driver Station
● This is what you will use to control and enable your robot

after writing a program for it

– roboRIO Imaging Tool
● Use this to put the 2017 FRC image on your roboRIO

● Check your Kit of Parts for a DVD and National
Instruments' website

Eclipse

● Install Eclipse Mars
● Installing the WPILib plugins

– Help → Install New Software...

– Work with:
http://first.wpi.edu/FRC/roborio/release/eclipse/

– Check WPILib Robot Development, containing
Robot C++ Development and Robot Java
Development

– Click next, finish installation process, restart Eclipse

http://first.wpi.edu/FRC/roborio/release/eclipse/

mindsensors.com FRC Library

● Download the zip at
http://mindsensors.com/largefiles/FIRST/mindsensors.zip

● Copy the user folder to
C:\Users\username\wpilib\user
– If it prompts for existing files, replace them with new

ones

● Find detailed instructions on our blog post
http://www.mindsensors.com/blog/how-to/how-to-use-sd540c-and-canlight-with-roborio

● Documentation available at
http://www.mindsensors.com/reference/FRC/html/Java/
http://www.mindsensors.com/reference/FRC/html/C++/

http://mindsensors.com/largefiles/FIRST/mindsensors.zip
http://www.mindsensors.com/blog/how-to/how-to-use-sd540c-and-canlight-with-roborio
http://www.mindsensors.com/reference/FRC/html/Java/
http://www.mindsensors.com/reference/FRC/html/C++/

Eclipse Team Number Configuration

● If you haven't already set your team number, do
so now before you forget
– Window → Preferences

– WPILib Preferences

– Team Number: ####

Install Java

● If you are using Java, install Java on the
roboRIO

● http://wpilib.screenstepslive.com/s/4485/m/13503
/l/599747-installing-java-8-on-the-roborio-using-
the-frc-roborio-java-installer-java-only

● https://goo.gl/xL7fZu

https://goo.gl/xL7fZu

First Project

● Let's create a project to start experimenting
with!

● New project
– Ctrl+N or File → New → Other...

– Open WPILib Robot C++/Java Development folder

– Select Example Robot C++/Java Project

– Getting Started template

– Click Next to rename project or Finish

Open Robot.cpp / Robot.java

● In the Project Explorer window, open the project you just
created (named Getting Started by default)

– Don't see the Project Explorer?
Window → Show View → Project Explorer

● Open the src folder

– C++
● Double-click Robot.cpp

– Java
● Open org.usfirst.frc.team####.robot package
● Double-click Robot.java

● This is the file we will be replacing with some examples

Hello World ��

C++
#include "WPILib.h"

class Robot: public IterativeRobot {

private:
 void RobotInit() {
 printf("Hello, world!\n");
 }

};

START_ROBOT_CLASS(Robot)

Java
package org.usfirst.frc.team####.robot;

import edu.wpi.first.wpilibj.IterativeRobot;

public class Robot extends IterativeRobot {

 public void robotInit() {
 System.out.println("Hello, world!");
 }

}

Hello World

C++

#include "WPILib.h"

class Robot: public IterativeRobot {

private:
 void RobotInit() {
 printf("Hello, world!\n");
 }

};

START_ROBOT_CLASS(Robot)

Java
package org.usfirst.frc.team####.robot;

import edu.wpi.first.wpilibj.IterativeRobot;

public class Robot extends IterativeRobot {

 public void robotInit() {
 System.out.println("Hello, world!");
 }

}

The example project comes with a lot of example code in your robot (robot.java/Robot.cpp) file.
Replace it with the code above. First we're just going to print "Hello, world!" to the console, classic.

In C++ we include the WPILib.h header file. In
Eclipse you can select it and press F3 (or right-
click → Open Declaration) to see what this file is.
It just includes the rest of the WPI robotic library
for FRC. Here we just need the IterativeRobot
template, but we will be making use of the other
components in the future.

In our Robot.cpp file we declare a Robot class
that inherits from IterativeRobot. Ask one of your
friendly upperclassmen programmers if you
haven't used inheritance in object-oriented
programming before. Everything that an
IterativeRobot will have, our Robot will now have.
Again, try F3 to learn what an IterativeRobot is
(or wait for the next slide).

In our Robot class we define a private method
RobotInit which will print "Hello, world!"

We end our file with a macro which will do some
magic to make things simple for us (actually it's
not magic, remember F3, you don't need to worry
about this part though).

Java! Hello you highly-caffeinated friends. The
description of C++ over there can be helpful, but
we'll go over the Java code specifically. The first
line is a package declaration. This won't be of
much significance now (besides replacing ####
with your team number!) but basically you have
your own little package just for you to put your
robot code.

Next we import the IterativeRobot class. Then we
create a Robot class that extends IterativeRobot.
Click IterativeRobot and press F3 (or right-click
→ Open Declaration) to see it's source code. Ask
a helpful teammate if you haven't used object-
oriented programming before.

Inside our class we override the robotInit
method. Why override? Well, take a look at
IterativeRobot. It has a method with exactly the
same method signature (access specifier: public,
return type: void, name: robotInit, parameters:
[none]). All this method does though is print a
message. While we're not doing much more right
now, we still want to run our own code instead,
so we're overriding it.

Deploying

● Right click your project folder (Getting Started
or similar, a blue folder) in the Project Explorer
(left side panel). If you don't see it then go to
Window → Show View → Project Explorer.

● Mouse-over the Run As submenu about two-
thirds down. Eclipse may freeze as moment
here. Click "WPILib C++/Java Deploy" and
again, Eclipse may freeze for several seconds.

● If your computer can communicate with the
roboRIO and you've set your team number, it
should connect and deploy your new code!

Driver Station

● You should be able to find the Driver Station in
C:\Program Files (x86)\FRC Driver
Station\DriverStation.exe, but you took care of
that when you followed the Installing the FRC
2016 Update Suite (All Languages), right?

● On the left panel there is a small gear in the
upper-right corner. Click this and select View
Console. You should see "Hello, world!" in
green from your robot!

Introduction to IterativeRobot

● The IterativeRobot class is a nice template to help you
get started quickly. It has eight important methods you
can use. They start with robot, autonomous, teleop, or
disabled and end with Init or Periodic.
– robotInit()
– robotPeriodic()

– autonomousInit()
– autonomousPeriodic()

– teleopInit()
– teleopPeriodic()

– disabledInit()
– disabledPeriodic()

● Note: method names begin with a capital letter in C++ but lower-case in Java

Introduction to IterativeRobot

Autonomous methods will be called, as you might have
guessed, in autonomous. AutonomousInit is run once
when autonomous begins and AutonomousPeriodic is
called repeatedly and rapidly as long as autonomous is
enabled.

● The same is true for teleop. If you use would like to use
test mode then those methods exist as well.

● RobotInit will be run once when your robot start up, and
RobotPeriodic will always run repeatedly. DisabledInit runs
once when your robot becomes disabled (for any reason),
and DisabledPeriodic runs as long as your robot is
disabled.

Init vs. Periodic Methods

● To be clear, the __Periodic methods are called
repeatedly and (hopefully) many times a second!

● One-time setup/initialization code goes in __Init,
repeated code goes in __Periodic

Lighting the CANLights

C++
#include "WPILib.h"

#include "mindsensors.h"
using mindsensors::CANLight;

class Robot: public IterativeRobot {

private:
 CANLight *lights;

 void RobotInit() {
 lights = new CANLight(3);
 }

 void AutonomousInit() {
 lights->ShowRGB(255, 255, 255);
 }

};

START_ROBOT_CLASS(Robot)

Java
package org.usfirst.frc.team####.robot;

import edu.wpi.first.wpilibj.IterativeRobot;
import com.mindsensors.CANLight;

public class Robot extends IterativeRobot {

 CANLight lights;

 public void robotInit() {
 lights = new CANLight(3);
 }

 public void autonomousInit() {
 lights.showRGB(255, 255, 255);
 }

}

Lighting the CANLights

● Now for real let's light up the CANLight! We will build
on what we learned earlier in Hello World. First we
are including/importing an additional file.

● In C++ we #include "mindsensors.h" but you can
also include only CANLight.h in this example.
CANLight is in the mindsensors namespace, so we
use a using statement so we don't have to put
mindsensors:: each time we type CANLight. Ask a
teammate about the namespace resolution operator!

● In Java you can include com.mindsensors.*; or just
com.mindsensors.CANLight for this example.

Lighting the CANLights

● The next new addition is a lights attribute to our
Robot class. It's type is a CANLight object, but
lights doesn't have a value yet.

● Now in RobotInit we construct a new CANLight
object for lights. Ask a friendly teammate
programmer about object-oriented
programming if this is new to you.

● We add an AutonomousInit method and use it
to call the ShowRGB method of our lights
object.

● Bonus: what will this program do?

Lighting the CANLights

● This program will make the CANLight illuminate
a white color on the RGB LED strip when
autonomous starts. Good job!
– Try setting a different color than white. Maybe even

set another color when teleoperated mode starts!

● You may notice the lights will stay on even
when autonomous ends. The CANLight will
continue with the last command you gave it until
you tell it otherwise. How might you turn the
lights off when autonomous ends?
Answer on the next slide.

Putting Out the CANLights

C++
#include "WPILib.h"

#include "mindsensors.h"
using mindsensors::CANLight;

class Robot: public IterativeRobot {

private:
 CANLight *lights;

 void RobotInit() {
 lights = new CANLight(3);
 }

 void AutonomousInit() {
 lights->ShowRGB(255, 255, 255);
 }

 void DisabledInit() {
 lights->ShowRGB(0, 0, 0);
 }

};

START_ROBOT_CLASS(Robot)

Java
package org.usfirst.frc.team####.robot;

import edu.wpi.first.wpilibj.IterativeRobot;
import com.mindsensors.CANLight;

public class Robot extends IterativeRobot {

 CANLight lights;

 public void robotInit() {
 lights = new CANLight(3);
 }

 public void autonomousInit() {
 lights.showRGB(255, 255, 255);
 }

 public void disabledInit() {
 lights.showRGB(0, 0, 0);
 }

}

Built-In Memory

● The CANLight has a set of 8 registers
● register: one of a small set of data
● Each register has a red, green, and blue value,

along with a duration
● The color components may each have a value

between 0 and 255
● Duration is a number of seconds between 0.0

and 2.55 seconds
– ex: 0.5 is half a second

Registers

0 1 2 3 4 5 6 7

time

red

green

blue

1.0

0

0

0

1.0

255

0

0

1.0

0

255

0

1.0

0

0

255

1.0

255

255

0

1.0

0

255

255

1.0

255

0

255

1.0

255

255

255

● This is a visual representation of the register system

Using the Registers

● So what are the registers for?
● They allow you to create more involved light

sequences without any advanced programming!
● Each register will have a default value when the

CANLight turns on (receives power)
● Want to find out what these default values are?

ShowRegister

C++
#include "WPILib.h"

#include "mindsensors.h"
using mindsensors::CANLight;

class Robot: public IterativeRobot {

private:
 CANLight *lights;

 void RobotInit() {
 lights = new CANLight(3);
 lights->ShowRegister(1);
 }

};

START_ROBOT_CLASS(Robot)

Java
package org.usfirst.frc.team####.robot;

import edu.wpi.first.wpilibj.IterativeRobot;
import com.mindsensors.CANLight;

public class Robot extends IterativeRobot {

 CANLight lights;

 public void robotInit() {
 lights = new CANLight(3);
 lights.showRegister(1);
 }

}

● ShowRegister accepts an index, 0 to 7, of
which register to show

WriteRegister

C++
#include "WPILib.h"

#include "mindsensors.h"
using mindsensors::CANLight;

class Robot: public IterativeRobot {

private:
 CANLight *lights;

 void RobotInit() {
 lights = new CANLight(3);
 lights->WriteRegister(1, 0.5, 255, 0, 127);
 }

};

START_ROBOT_CLASS(Robot)

Java
package org.usfirst.frc.team####.robot;

import edu.wpi.first.wpilibj.IterativeRobot;
import com.mindsensors.CANLight;

public class Robot extends IterativeRobot {

 CANLight lights;

 public void robotInit() {
 lights = new CANLight(3);
 lights.writeRegister(1, 0.5, 255, 0, 127);
 }

}

● Want to change what's in a register?
WriteRegister takes the index to write to, the
duration, and red, green, and blue intensities

Aside: Tooltips and Autocomplete

● What if you forgot what parameters
WriteRegister accepts, or what order to put
them?

● You could check the documentation, we'll go
over this later

● What if you don't want to leave Eclipse?

Ctrl+space

Start typing to narrow search

Enter

Type a value, tab (Java)

Done! (enter to complete)

More: sysout

More: for

Recap

● So far you know how to
– set a red, green, blue value

– store colors to registers

– load colors from registers

● But wait, what about the cool features using
registers‽

Flash

C++
#include "WPILib.h"

#include "mindsensors.h"
using mindsensors::CANLight;

class Robot: public IterativeRobot {

private:
 CANLight *lights;

 void RobotInit() {
 lights = new CANLight(3);
 lights->Flash(1);
 }

};

START_ROBOT_CLASS(Robot)

Java
package org.usfirst.frc.team####.robot;

import edu.wpi.first.wpilibj.IterativeRobot;
import com.mindsensors.CANLight;

public class Robot extends IterativeRobot {

CANLight lights;

 public void robotInit() {
 lights = new CANLight(3);
 lights.flash(1);
 }

}

● Turns the CANLight on with the color in a register
● leaves it on for the duration in that register
● turns it off for that duration
● Repeat!

Flash

● You don't need to write any timing code in your
robot program

● Just call flash and it will keep flashing until you
give it another command!

● Try out some different colors and durations

Registers Default Values

C++
#include "WPILib.h"

#include "mindsensors.h"
using mindsensors::CANLight;

class Robot: public IterativeRobot {

private:
 CANLight *lights;

 void RobotInit() {
 lights = new CANLight(3);
 for (uint8_t i = 0; i < 8; i++) {
 lights->ShowRegister(i);
 Wait(1.0);
 }
 }

};

START_ROBOT_CLASS(Robot)

Java
package org.usfirst.frc.team1086.robot;

import edu.wpi.first.wpilibj.IterativeRobot;
import edu.wpi.first.wpilibj.Timer;

import com.mindsensors.CANLight;

public class Robot extends IterativeRobot {

 CANLight lights;

 public void robotInit() {
 lights = new CANLight(3);
 for (int i = 0; i < 8; i++) {
 lights.showRegister(i);
 Timer.delay(1);
 }
 }

}

● Let's say you want to find out what the default register values are
● You could also check the documentation or the second slide on

registers but...

Wait...

● This program will cycle through each of the 8
registers (indexed 0 to 7) and wait a second
after each

● Doesn't this seem like too much code for such a
simple task?

Cycle

C++
#include "WPILib.h"

#include "mindsensors.h"
using mindsensors::CANLight;

class Robot: public IterativeRobot {

private:
 CANLight *lights;

 void RobotInit() {
 lights = new CANLight(3);
 lights->Cycle(0, 7);
 }

};

START_ROBOT_CLASS(Robot)

Java
package org.usfirst.frc.team####.robot;

import
edu.wpi.first.wpilibj.IterativeRobot;
import com.mindsensors.CANLight;

public class Robot extends IterativeRobot {

CANLight lights;

 public void robotInit() {
 lights = new CANLight(3);
 lights.cycle(0, 7);
 }

}

● How about that!

Cycle

● Again, no need for any timing code of your own!
● Cycle takes 2 parameters

– index to cycle from

– index to cycle to

● It will continue to cycle through these until it is
given another command

● Each color will be shown for the duration in that
register

● Ex: lights.cycle(1, 3);

– 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2...

Fade

C++
#include "WPILib.h"

#include "mindsensors.h"
using mindsensors::CANLight;

class Robot: public IterativeRobot {

private:
 CANLight *lights;

 void RobotInit() {
 lights = new CANLight(3);
 lights->Fade(1, 3);
 }

};

START_ROBOT_CLASS(Robot)

Java
package org.usfirst.frc.team####.robot;

import
edu.wpi.first.wpilibj.IterativeRobot;
import com.mindsensors.CANLight;

public class Robot extends IterativeRobot {

CANLight lights;

 public void robotInit() {
 lights = new CANLight(3);
 lights.fade(1, 3);
 }

}

Fade

● Smooth transition between colors
● The duration in each register is how long it will

take to fade from that color to the next

Memory Lifespan and Reset

● When a CANLight loses power, its registers
return to their default values

● Your robot might briefly lose power in a match
● A good place to call WriteRegister is in

RobotInit, or AutonomousInit and TeleopInit if
you have different color patterns for each mode

● You can call (Java) .reset() or (C++) ->Reset() to
return all registers to their default values

mindsensors Configuration Tool

● You can use this tool to change the ID and test
colors

http://www.mindsensors.com/blog/how-to/using-the-mindsensors-configuration-tool

http://www.mindsensors.com/blog/how-to/using-the-mindsensors-configuration-tool

Color Test

How to Use the Documentation

● Documentation is an extremely useful tool (as
you may know!)

● Let's say you wanted to know about
WriteRegister. What does it do? What
arguments does it take? Does it return
anything?

Documentation: Home Page

Documentation: Class Page

Documentation: Method List

Documentation: Method Detail

Precautions

● The CANLight will draw a lot of attention to your
robot
– People like bright, colorful lights

● Please be tasteful with the speeds, intensity,
and contrasting colors you use
– Your robot represents your team

– 255 is very bright! It can have a lot more impact if
you use lower values normally, and momentarily
use very bright colors when something special
happens (score a goal, sudden impact, etc.)

Resources

● mindsensors.com FRC library blog post:
http://www.mindsensors.com/blog/how-to/how-to-use-sd540c-and-canlight-with-roborio

● mindsensors.com FRC library:
http://www.mindsensors.com/largefiles/FIRST/mindsensors.zip

● mindsensors Configuration Tool blog post:
http://www.mindsensors.com/blog/how-to/using-the-mindsensors-configuration-tool

● mindsensors Configuration Tool:
http://www.mindsensors.com/largefiles/FIRST/mindsensorsConfigurationTool.zip

● mindsensors.com FRC library documentation in Java:
http://www.mindsensors.com/reference/FRC/html/Java/

● mindsensors.com FRC library documentation in C++:
http://www.mindsensors.com/reference/FRC/html/C++/

● WPI tutorials:
https://wpilib.screenstepslive.com/s/4485

http://www.mindsensors.com/blog/how-to/how-to-use-sd540c-and-canlight-with-roborio
http://www.mindsensors.com/largefiles/FIRST/mindsensors.zip
http://www.mindsensors.com/blog/how-to/using-the-mindsensors-configuration-tool
http://www.mindsensors.com/largefiles/FIRST/mindsensorsConfigurationTool.zip
http://www.mindsensors.com/reference/FRC/html/Java/
http://www.mindsensors.com/reference/FRC/html/C++/
https://wpilib.screenstepslive.com/s/4485

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

